Carbon2Chem: Industry cooperation for climate protection and energy transition

thyssenkrupp

thyssenkrupp initiates project to convert steel mill gases into chemicals 


In Duisburg today Johanna Wanka, German Minister of Education and Research, announced funding of more than 60 million euros for the Carbon2Chem project initiated by thyssenkrupp. The aim of Carbon2Chem is to convert process gases from steel production – including the CO2 they contain – into base chemicals. The greenhouse gas CO2 would then no longer be discharged into the atmosphere. The energy required for the conversion process is to come from renewable sources.

16 partners from the areas of basic and applied research and various sectors of industry are involved in the project. thyssenkrupp and the Max Planck Institute for Chemical Energy Conversion have carried out preparatory planning and scientific work. “Carbon2Chem can be an important contribution to climate protection and the transition to renewables,” said Dr. Heinrich Hiesinger, CEO of thyssenkrupp AG.

At least ten years of development work will be needed before the process is ready for industrial-scale use. “We therefore need reliable political framework conditions. Without a balance between CO2 standards and maintaining competitiveness, Europe will lose out on innovation,” added Hiesinger.

Carbon2Chem is characterized by broad-based, cross-industrial cooperation. It will create a new network of steel production, electricity generation and chemical production.

At present, gases from steel production are burnt to produce electricity and heat for the production process. Carbon2Chem puts the gases at the start of a chemical production chain. This is possible because steel mill gases include hydrogen, nitrogen and carbon, the basis for numerous chemical products.

CO2 can be used as a raw material by splitting its molecules. This requires hydrogen, which in part is already present in the steel mill gases. Additional hydrogen is to be produced using renewable energies. The processes in the steel mill will be modified in such a way that part of the process gases are diverted to chemical production when low-cost excess electricity is available from renewable sources.

Carbon2Chem’s prospects of success are good because the basic chemical processes and required technologies are largely known. It is already technically possible to convert process gases from steel production into ammonia as a starting product for fertilizers, though not yet cost-efficiently. The process would also utilize some part of the CO2 contained in the steel mill gases. Another possibility would be to produce methanol from mill gases, a process which would utilize almost all the CO2 they contain.

In order to use renewable energies for chemical conversion, catalysts would be required that can cope with sharp fluctuations in the process. More research and development work is required in this area. Cost-efficient methods of producing hydrogen – even with sharp fluctuations in the energy supply – will also have to be developed. Cleaning and processing the steel mill gases is another area requiring further research.

A technical center will be built on the premises of thyssenkrupp Steel Europe in Duisburg this fall to test the Carbon2Chem processes on a pilot scale once the first phase of the project is complete.

For more information, go to: http://www.carbon2chem.com

thyssenkrupp is a diversified industrial group with traditional strengths in materials and a growing share of capital goods and services businesses. Around 155,000 employees in nearly 80 countries work with passion and technological expertise to develop high-quality products and intelligent industrial processes and services for sustainable progress. Their skills and commitment are the basis of our success. In fiscal year 2014/2015 thyssenkrupp generated sales of around €43 billion.

Together with our customers we develop competitive solutions for the challenges of the future in the areas Mechanical, Plant and Materials. With our engineering expertise we enable our customers to gain an edge in the global market and manufacture innovative products in a cost- and resource-friendly way. For us, technical progress and innovations, allied with the combined strength of the Group, are key factors enabling us to meet current and future customer and market requirements around the world, grow on the markets of the future, and generate strong and stable earnings, cash flows and value growth.

1